基于WYLLIE-LEE方程的顶板砂岩含水饱和度测井解释方法Logging Interpretation of Water Saturation in Sandstone Aquifers Based on the WYLLIE-LEE Equation
洪荒,陈增宝,于航,陈同俊
摘要(Abstract):
煤层顶板砂岩水害威胁矿井生产安全,含水饱和度测井解释是评估砂岩富水性的关键。为此,该文依据WYLLIE时间平均方程和LEE孔隙度近似计算公式,在顶板饱水砂岩段测井曲线响应约束下,采用贝叶斯方法优选G、n关键参数,构建适配研究区地质条件的顶板砂岩含水饱和度测井解释模板,并将其应用于恒源煤矿上石盒子组顶板砂岩的含水饱和度解译中。结果表明:基于WYLLIE-LEE方程的顶板砂岩含水饱和度测井解释方法高度依赖G、n值的选取,采用合适的G、n参数解释的含水饱和度曲线与传统的西门度公式计算结果高度一致,决定系数达0.7以上。相比西门度公式,该方法只需要输入声波测井与密度测井而不需要引入各类复杂的中间参数,更加符合当前煤田测井工程现状。研究成果为煤层顶板砂岩含水层识别与富水性评价提供一种新思路。
关键词(KeyWords): 煤田测井;含水饱和度;富水性;解释
基金项目(Foundation): 地球深部探测与矿产资源勘查国家科技重大专项(2024ZD1004201)
作者(Author): 洪荒,陈增宝,于航,陈同俊
参考文献(References):
- [1]曾一凡,武强,赵苏启,等.我国煤矿水害事故特征、致因与防治对策[J].煤炭科学技术,2023, 51(7):1-14.
- [2]张辉,吕彪,马爱军,等.煤层顶板含水岩性层划分与富水性评价方法[J].煤炭技术,2024,43(3):203-207.
- [3]李梁宁,魏久传,李立尧,等.基于测井资料的含水层富水性预测模型:以鄂尔多斯地区营盘壕井田为例[J].中国矿业,2019, 28(9):143-147.
- [4]武娟,罗仁泽,雷璨如,等.基于大语言模型的致密砂岩储层测井含水饱和度预测[J].天然气工业,2024, 44(9):77-87.
- [5]王立伟,李生杰,刘晓雪,等.四川盆地五峰-龙马溪组低阻页岩含水饱和度测井评价[J].科学技术与工程,2022, 22(16):6456-6462.
- [6]ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the Aime, 1942, 146(1):54-62.
- [7] SIMANDOUX P. Dielectric measurements on porous media,application to the measurements of water saturation:Study of behavior of argillaceous formations[J]. Revue de L’institut Francais du Petrole,1963, 18(S):193-215.
- [8]WAXMAN M H. Electrical conductivities in oil-bearing shaly sands[J]. Society of Petroleum Engineers Journal, 1968, 8(2):107-122.
- [9]李山生,黄质昌,杜蕊,等. Waxman-Smits模型中参数B和QV计算方法研究[J].测井技术,2012, 36(3):244-249.
- [10]王迪,魏锋,陈现,等.改进的西门度模型在饱和度测井解释中的应用[J].海洋石油,2016, 36(3):70-75.
- [11]刘建新,胡文亮,高楚桥,等.东海地区低渗-致密储层含水饱和度定量评价方法[J].中国海上油气,2019, 31(3):108-116.
- [12]朱学娟,单沙沙,傅栋.低孔渗泥质砂岩储层并联导电模型分析及改进[J].地球物理学进展,2016, 31(6):2724-2728.
- [13]LI C, YAN W, WU H, et al. Calculation of oil saturation in clayrich shale reservoirs:A case study of qing 1 member of cretaceous qingshankou formation in gulong sag,songliao basin,NE China[J].石油勘探与开发(英文版),2022, 49(6):1351-1363.
- [14]FAWAD M. Monitoring geological storage of CO2:a new approach[J]. Scientific Reports, 2021, 11(1).
- [15]FAWAD, Mondol N H. Monitoring geological storage of CO2 using a new rock physics model[J]. Scientific Reports, 2022, 12(1).
- [16]FAWAD M, RAHMAN M J, MONDOL N H. Seismic reservoir characterization of potential CO2 storage reservoir sandstones in Smeaheia area, Northern North Sea[J]. Journal of Petroleum Science and Engineering, 2021,205.
- [17]王道坤,崔亚利,易德礼.地面定向钻探技术在煤层底板高承压含水层改造中的应用[J].煤田地质与勘探,2019(S1):32-36.
- [18]王飞,许进鹏,吴浩.恒源矿构造特征及其对矿井水的控制机理[J].煤矿安全,2013(7):28-30.
- [19]WYLLIE M R J, GREGORY A R, GARDNER L W. Elastic wave velocities in heterogeneous and porous media[J]. Geophysics, 1956, 21(1):41-70.
- [20]LEE M W, HUTCHINSON D R, COLLETT T S, et al. Seismic velocities for hydrate-bearing sediments using weighted equation[J].Journal of Geophysical Research:Solid Earth, 1996, 101(B9):20347-20358.
- [21]LEE M W. Biot–Gassmann theory for velocities of gas hydratebearing sediments[J]. Geophysics, 2002, 67(6):1711-1719.
- [22]LEE M W. Velocity ratio and its application to predicting velocities[R]. U.S. Geological Survey Bulletin, 2003.
- [23]MAVKO G, MUKERJI T, DVORKIN J. The rock physics handbook[M]. 3rd ed. Cambridge University Press, 2020.