煤矸石资源化低碳利用:碳捕集与碳封存路径研究Low-Carbon Resource Utilization of Coal Gangue: Research on Carbon Capture and Storage Pathways
郭红波,白林,杜松,张啸,陶盛
摘要(Abstract):
煤矸石是我国堆存量最大的工业固废之一,大量堆存不仅侵占土地,还通过自燃和淋溶作用造成多介质污染并持续释放温室气体。现有利用方式(如建材、发电)普遍附加值低、碳减排效益有限。在“双碳”目标背景下,发展煤矸石高值低碳利用路径尤为迫切。本研究提出将煤矸石用于碳捕集与封存(CCUS),系统分析了通过吸附剂改性、固碳建材制备及“地上-地下”协同封存等技术实现CO_2高效捕集与封存的可行性及经济性。结果表明,该路径可大规模消纳煤矸石,降低CCUS成本,实现“以废治污”,兼具显著环境效益和经济潜力。尽管仍面临成本与规模化挑战,通过过程强化、材料优化和政策引导,煤矸石基碳捕集技术有望成为煤炭行业低碳转型的重要方向。
关键词(KeyWords): 煤矸石;资源化利用;碳捕集;碳封存;低碳发展
基金项目(Foundation): 陕西省创新能力支撑计划“地质封存低碳技术研究创新团队”(2024RS-CXTD-54)
作者(Author): 郭红波,白林,杜松,张啸,陶盛
参考文献(References):
- [1]ZHAO Y, DONG Y, GUO Y, HUO F, YAN F, HE H. Recent progress of green sorbents-based technologies for low concentration CO2capture[J]. Chinese Journal of Chemical Engineering, 2021, 31:113-125.
- [2]LI S, YUAN X, DENG S, ZHAO L, LEE K B. A review on biomass-derived CO 2 adsorption capture:Adsorbent, adsorber,adsorption, and advice[J]. Renewable and Sustainable Energy Reviews, 2021, 152.
- [3]LI J, WANG J. Comprehensive utilization and environmental risks of coal gangue:A review[J]. Journal of Cleaner Production, 2019,239.
- [4]CHEN P, ZHANG L, WANG Y, FANG Y, ZHANG F, XU Y.Environmentally friendly utilization of coal gangue as aggregates for shotcrete used in the construction of coal mine tunnel[J]. Case Studies in Construction Materials, 2021, 15.
- [5]赵欣豪,刘会虎,丁海,等.二氧化碳地质封存工程实例及技术分析[J].中国煤炭地质,2024, 36(10):66-69.
- [6]HAO J, GAO F, FANG X, et al. Multi-factor decomposition and multi-scenario prediction decoupling analysis of China’s carbon emission under dual carbon goal[J]. Science of The Total Environment, 2022, 841.
- [7]NGO I, MA L, SAJIB M H, et al. Examination of binderless zeolite blend as backfill materials to enhance CO 2 adsorption in coal mine working face[J]. Case Studies in Construction Materials, 2024, 21.
- [8]SONG W, ZHANG J, LI M, et al. Underground disposal of coal gangue backfill in China[J]. Applied Sciences, 2022, 12(23).
- [9]顾成,李宇.煤基固废物综合利用研究进展[J].煤炭与化工,2020, 43(9):98-101,6.
- [10]张拥军,常鑫,杨金花.浅析煤矿煤矸石山生态环境恢复治理技术[J].山西化工,2019, 39(1):185-188.
- [11]朱超,张雷,肖娥,等.深部煤层CO2地质封存潜力分析——以徐州旗山关闭煤矿为例[J].中国煤炭地质,2025, 37(9):48-53.
- [12]HUA C, ZHOU G, YIN X, et al. Assessment of heavy metal in coal gangue:distribution, leaching characteristic and potential ecological risk[J]. Environmental Science and Pollution Research,2018, 25(32):32321-32331.
- [13]XU Z, QIAN Y, HONG X, et al. Contamination characteristics of polycyclic aromatic compounds from coal sources in typical coal mining areas in Huaibei, China[J]. Science of The Total Environment, 2023,873.
- [14]JIANG C, ZHAO D, CHEN X, et al. Distribution, source and ecological risk assessment of polycyclic aromatic hydrocarbons in groundwater in a coal mining area, China[J]. Ecological Indicators,2022, 136.
- [15]郭彦霞,程芳琴.煤矸石综合利用的产业化及其展望[J].化工学报,2014, 65(7):2443-2453.
- [16]LIU X. Low-carbon utilization of coal gangue under the carbon neutralization strategy:a short review[J]. Journal of Material Cycles and Waste Management, 2023, 25(4):1978-1987.
- [17]WANG H, XIONG R, ZONG Y, et al. Effect of raw material ratio and sintering temperature on properties of coal gangue–feldspar powder artificial aggregate[J]. Construction and Building Materials, 2023,384.
- [18]QING Z, GUIJIAN L, SHUCHUAN P, et al. Immobilization of hexavalent chromium in soil-plant environment using calcium silicate hydrate synthesized from coal gangue[J]. Chemosphere, 2022, 305.
- [19]LI Z, GAO Y, ZHANG J, et al. Effect of particle size and thermal activation on coal gangue-based geopolymer[J]. Materials Chemistry and Physics, 2021, 267.
- [20]HUANG H, DOU D, LIU G. Modeling of coal and gangue volume based on shape clustering and image analysis[J]. International Journal of Coal Preparation and Utilization, 2023, 43(2):329-345.
- [21]KURUSTA T, MUCSI G, KUMAR S, et al. Carbon-dioxide sequestration by mechanical activation of Linz–Donawitz steel slag:the effect of water on CO2 capture[J]. Fuel, 2023, 352.
- [22]GAO Y, DU H, WU Y, et al. CO 2 capture on a novel porous silicate material from coal gangue:equilibrium, kinetic, and thermodynamic studies[J]. Bulletin of the Korean Chemical Society,2018, 39(2):184-189.
- [23]李开源. CO2在煤矿采空区矸石充填材料中的扩散与吸附特性研究[D].北京:中国矿业大学,2021.
- [24]QUAN C, CHU H, ZHOU Y, et al. Amine-modified silica zeolite from coal gangue for CO2 capture[J]. Fuel, 2022, 322.
- [25]AI J, LI F, WU Y, et al. Synthesis of mesoporous magnesium silicate from coal gangue for efficient CO 2 adsorption at room temperature[J]. Fuel, 2023, 341.
- [26]QIN L, GAO X. Properties of coal gangue–Portland cement mixture with carbonation[J]. Fuel, 2019, 245:1-12.
- [27]CHEN Q, ZHU L, WANG Y, et al. The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration CO 2[J]. Science of The Total Environment, 2022,852.
- [28]NGO I, MA L, ZHAI J, et al. Enhancing fly ash utilization in backfill materials treated with CO 2 carbonation[J]. International Journal of Mining Science and Technology, 2023, 33(3):323-337.
- [29]HUO B, ZHANG J, LI M, et al. Effect of CO2 mineralization on alkali-activated backfill material with different coal-based solid wastes[J]. Sustainability, 2023, 15(6).
- [30]HUO B, ZHANG Q, LI M, et al. Using recycled gangue to capture CO2 and prepare alkali-activated backfill paste:adsorption and microevolution mechanisms[J]. Fuel, 2024, 358.