闭坑煤矿压缩CO2储能研究进展Progress on Compressed CO2 Energy Storage in Closed Coal Mines
郑升,曹艺东,杜松,张啸
摘要(Abstract):
闭坑煤矿形成的地下空间为新型储能提供了独特载体。本文系统梳理了二氧化碳压缩储能(CO_2-CCES)在矿区再利用中的研究进展,归纳总结了以老空区、巷道为储气腔的系统构型、热力学性能与地质工程适用性,并与盐穴CCES及其他矿井储能(如抽水蓄能改造)进行对比。最新研究显示,CO_2-CCES可在实现电网调峰的同时产生一定规模的CO_2地下封存效益,但其工程可行性受限于采空区结构完整性、渗漏与自燃风险、井筒完井质量与监测手段等关键环节。本文汇总了场地筛选与运行控制的关键指标,讨论了与矿井地热、矿井水治理及煤层气抽采协同的环境收益与安全边界,并评估了经济性与政策机制对示范的影响。最后提出面向闭坑煤矿CO_2储能的多场耦合表征、腔体长期稳定性、标准体系与试点工程等优先研究方向,为后续示范与规模化应用提供参考。
关键词(KeyWords): 闭坑煤矿;CO_2压缩储能;进展总结
基金项目(Foundation): 陕西省创新能力支撑计划“地质封存低碳技术研究创新团队”(2024RS-CXTD-54)
作者(Author): 郑升,曹艺东,杜松,张啸
参考文献(References):
- [1] WU F, LIU Y, GAO R. Challenges and opportunities of energy storage technology in abandoned coal mines:A systematic review[J].Journal of Energy Storage, 2024, 83.
- [2] LIU W, DUAN X, JIANG L, et al. Compressed carbon dioxide energy storage in salt caverns holds promise for China’s hard-to-abate sectors[J]. The Innovation Energy, 2024, 2(1).
- [3]赵同彬,刘淑敏,马洪岭,等.废弃煤矿压缩空气储能研究现状与发展趋势[J].煤炭科学技术,2023, 51(10):163-176.
- [4] CAO Z, DENG J, ZHOU S, et al. Research on the feasibility of compressed carbon dioxide energy storage system with underground sequestration in antiquated mine goaf[J]. Energy Conversion and Management, 2020, 211.
- [5] BARTELA L, SKOREK-OSIKOWSKA A, DYKAS S, et al.Thermodynamic and economic assessment of compressed carbon dioxide energy storage systems using a post-mining underground infrastructure[J]. Energy Conversion and Management, 2021, 241.
- [6]朱超,张雷,肖娥,等.深部煤层CO2地质封存潜力分析——以徐州旗山关闭煤矿为例[J].中国煤炭地质,2025, 37(9):48-53.
- [7]赵欣豪,刘会虎,丁海,等.二氧化碳地质封存工程实例及技术分析[J].中国煤炭地质,2024, 36(10):66-69.
- [8] DU K, XIE J, KHANDELWAL M, et al. Utilization methods and practice of abandoned mines and related rock mechanics under the ecological and double carbon strategy in China—a comprehensive review[J]. Minerals, 2022, 12(9).
- [9] BREEZE P. Power generation technologies[M]. Newnes, 2019.
- [10] MWAKIPUNDA G C, MGIMBA M M, NGATA M R, et al.Recent advances on carbon dioxide sequestration potentiality in salt caverns:A review[J]. International Journal of Greenhouse Gas Control, 2024, 133.
- [11] LI W, REN T W, SU E L, et al. Is the long-term sequestration of CO 2 in and around deep, abandoned coal mines feasible?[J].Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2018, 232(1):27-38.
- [12] OZARSLAN A. Large-scale hydrogen energy storage in salt caverns[J]. International Journal of Hydrogen Energy, 2012, 37(19):14265-14277.
- [13] ZENG Z, MA H, YANG C, et al. Self-healing behaviors of damaged rock salt under humidity cycling[J]. International Journal of Rock Mechanics and Mining Sciences, 2024, 174.
- [14] BAI M, SUN J, SONG K, et al. Risk assessment of abandoned wells affected by CO 2[J]. Environmental Earth Sciences, 2015, 73(11):6827-6837.
- [15] JALILI P, SAYDAM S, CINAR Y. CO2 storage in abandoned coal mines[C]. Wollongong:University of Wollongong&Australasian Institute of Mining and Metallurgy, 2011:355-360.
- [16] CHEN H, CONG T N, YANG W, et al. Progress in electrical energy storage system:A critical review[J]. Progress in Natural Science, 2009, 19(3):291-312.
- [17] SHANG D, PEI P, ZUO Y. Techno-economic feasibility analysis of pumped storage hydroelectricity in abandoned underground coal mines[J]. Journal of Energy Resources Technology, 2020, 142(12).
- [18] LIU H, HE Q, BORGIA A, et al. Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs[J]. Energy Conversion and Management, 2016, 127:149-159.
- [19] STEPANEK J, MINKLEY W, SYBLIK J, et al. Thermodynamic analysis of compressed CO 2 energy storage in salt caverns with gravel stabilization[J]. Journal of Energy Storage, 2024, 82.