华北型煤田某多含水层矿井水文地球化学特征与水源识别Hydrogeochemical Characteristics and Water Source Identification of a Multi-aquifer Coal Mine in North China Coalfield
於昌峰
摘要(Abstract):
以华北某煤矿为例,分析了含水层地下水和老空水水化学特征,建立了单一充水水源识别的综合逐步模型,提出了老空水来源模式并采用Piper图和综合逐步模型进行了验证。研究结果显示,老空水多个水化学指标含量与含水层地下水差异明显,尤其是TDS、SO_4~(2-)和Na~+含量明显偏高。长石、方解石、绿泥石等中的硅酸盐矿物和碳酸盐矿物溶解是老空水中Na~++K~+、Ca~(2+)、Mg~(2+)和HCO_3~-增加的主要原因,黄铁矿氧化和硫酸盐溶解是SO_4~(2-)增加的主要原因。采用特征离子对比法结合Bayes识别方法建立了单一水源识别的综合逐步模型。矿区老空水主要来源于二叠系砂岩水和侏罗系红层水,Piper图显示老空水与砂岩水和红层水分布范围高度重叠,验证了老空水来源模式。
关键词(KeyWords): 多含水层矿井;水化学特征;水源识别;综合逐步模型;水-岩作用
基金项目(Foundation): 江苏煤炭地质勘探三队科研项目“地面顺煤层水平井成孔及下套管技术与工艺研究”
作者(Author): 於昌峰
参考文献(References):
- [1]陈陆望,胡永胜,张杰,等.华北型煤田水文地球化学勘探关键技术研究进展[J].煤田地质与勘探,2023,51(2):207-219.CHEN L, HU Y, ZHANG J, et al. Progress of research on key technologies for hydrogeochemical prospecting in North China type coalfield[J]. Coal Geology&Exploration, 2023, 51(2):207-219.
- [2]贺亮亮,吕广罗,胡安焱,等.基于水化学特征分析的矿井突水水源判别[J].中国煤炭地质,2022, 34(6):34-39.HE L, LYU G, HU A, et al. Mine water bursting water source discrimination based on hydrochemical features analysis[J]. Coal Geology of China, 2022, 34(6):34-39.
- [3]陈红江,李夕兵,刘爱华,等.用Fisher判别法确定矿井突水水源[J].中南大学学报(自然科学版),2009, 40(4):1114-1120.CHEN H, LI X, LIU A, et al. Identifying of mine water inrush sources by Fisher discriminant analysis method[J]. Journal of Central South University(Science and Technology), 2009, 40(4):1114-1120.
- [4]史秋艾.新疆东沟煤矿充水水源识别及水文地球化学特征研究[J].中国煤炭地质,2022, 34(11):41-45.SHI Q. Research on Hydrogeochemical Characteristics and Water Filling Source Identification of Donggou Coalmine, Xinjiang[J]. Coal Geology of China, 2022, 34(11):41-45.
- [5]JIANG C, ZHU S, HU H, et al. Deep learning model based on big data for water source discrimination in an underground multiaquifer coal mine[J]. Bulletin of Engineering Geology and the Environment, 2022,81. https://doi.org/10.1007/s10064-021-02535-5.
- [6]张好,姚多喜,鲁海峰,等.主成分分析与Bayes判别法在突水水源判别中的应用[J].煤田地质与勘探,2017, 45(5):87-93.ZHANG H, YAO D, LU H, et al. Application of principal component analysis and Bayes discrimination approach in water source identification[J]. Coal Geology&Exploration, 2017, 45(5):87-93.
- [7]朱赛君,姜春露,毕波,等.基于组合权-改进灰色关联度理论的矿井突水水源识别[J].煤炭科学技术,2022, 50(4):165-172.ZHU S, JIANG C, BI o, et al. Identification of mine water inrush source based on combination weight-theory of improved grey relational degree[J]. Coal Science and Technology, 2022, 50(4):165-172.
- [8]张慧玲,李博,张文平,等.基于PCA-KD-KNN方法的矿井突水水源判别分析研究[J].矿业研究与开发,2020, 40(12):106-111.ZHAGN H, LI B, ZHANG W, et al. Study on Discriminant analysis of mine water inrush source based on PCA-KD-KNN method[J]. Minng Research and Development, 2020, 40(12):106-111.
- [9]华星月,邵良杉.基于KPCA-GWO-SVM的矿井突水水源识别[J].煤矿安全,2023, 54(2):195-200.HUA X, SHAO L. Mine water inrush source identification model based on KPCA-GWO-SVM[J]. Safety in Coal Mines, 2023, 54(2):195-200.
- [10]马莲净,王颂,赵宝峰,等.基于PCA-SSA-BPNN模型的矿井突水水源识别方法[J].采矿与安全工程学报,2025,42(2):273-281.MA L, WANG S , ZHAO B, et al. Identification method of mine water inrush source based on PCA-SSA-BPNN[J]. Journal of Mining&Safety Engineering, 2025, 42(2):273-281.
- [11] GUI H, QIU H, QIU W, et al. Overview of goaf water hazards control in China coalmines[J]. Arabian Journal of Geosciences, 2018,11. https://doi.org/10.1007/s12517-018-3391-z.
- [12]孙亚军,张莉,徐智敏,等.煤矿区老空水水质形成与演化的多场作用机制及研究进展[J].煤炭学报,2022, 47(1):423-437.SUN Y, ZHANG L, XU Z, et al. Multi-field action mechanism and research progress of coal mine water quality formation and evolution[J]. Journal of China Coal Society, 2022, 47(1):423-437.
- [13]任海峰,吴青海,李西民,等.煤矿采空区积水水源的识别研究[J].西安科技大学学报,2021, 41(2):246-252.REN H, WU Q, LI X, et al. Identification of water source in coal mine goaf[J]. Journal of Xi’an University of Science and Technology, 2021,41(2):246-252.
- [14]孙亚军,赵先鸣,徐智敏,等.煤矿采空区水-岩作用模拟试验研究[J].煤田地质与勘探,2023, 51(1):237-246.SUN Y, ZHAO X, XU Z, et al. Simulation test on water-rock interaction in coal mine goaf[J]. Coal Geology&Exploration, 2023, 51(1):237-246.
- [15]张凯,刘舒予,曹志国,等.煤矿地下水库水岩作用时间规律模拟试验研究[J].煤田地质与勘探,2023, 51(3):54-64.ZHANG K, LIU S, CAO Z, et al. Study on the time law of water-rock interaction in coal mine groundwater reservoir[J]. Coal Geology&Exploration, 2023, 51(3):54-64.
- [16]姜春露,黄文迪,傅先杰,等.阜东矿区二叠系砂岩水低硫酸盐水化学特征及成因[J].煤田地质与勘探,2023, 51(11):74-82.JIANG C, HUANG W, FU X, et al. Characteristics and genetic mechanism of low sulfate in high-salt groundwater of Permian sandstone in Fudong mining area, Huainan[J]. Coal Geology&Exploration,2023, 51(11):74-82.
- [17]JIANG C, AN Y, ZHENG L, et al. Water source discrimination in a multiaquifer mine using a comprehensive stepwise discriminant method[J]. Mine Water and the Environment, 2021, 40(2):442-455.
- [18]安艳晴.复杂多含水层矿井水文地球化学特征与水源判别研究[D].安徽合肥:安徽大学,2020.
- [19]李运江,王伟,许峰,等.呼吉尔特矿区石拉乌素煤矿矿井涌水水源判别及定量分析[J].中国煤炭地质,2023, 35(8):45-51.LI Y, WANG W, XU F, et al. Identification and quantitative analysis of water source in Shilawusu coal mine of Hujilt mining area[J]. Coal Geology of China, 2023, 35(8):45-51.
- [20]张春雷,钱家忠,赵卫东,等. Bayes方法在矿井突水水源判别中的应用[J].煤田地质与勘探,2010, 38(4):34-37.ZHANG C, QIAN J, ZHAO W, et al. The application of bayesian approach to discrimination of mine water-inrush source[J]. Coal Geology&Exploration, 2010, 38(4):34-37.
- [21]张蕊,姜振泉,李秀晗,等.大采深厚煤层底板采动破坏深度[J].煤炭学报,2013, 38(1):67-72.ZHANG R, JIANG Z, LI X, et al. Study on the failure depth of thick seam floor in deep mining[J]. Journal of China Coal Society, 2013, 38(1):67-72.