温度对煤厌氧发酵过程中糖类代谢及效率的影响研究Temperature Effects on Carbohydrate Metabolism and Efficiency During Coal Anaerobic Fermentation
陈俊侠,吴会永,史小卫,祁梦娇,石志衍,王乾
摘要(Abstract):
随着全球能源需求的增加和环境问题的加剧,煤的厌氧发酵技术因其能够将煤炭转化为甲烷等清洁能源逐渐成为研究热点。在不同温度(50℃、60℃、70℃)下进行厌氧发酵实验,通过对比分析各厌氧发酵系统中气相、液相变化及菌群结构的差异,探讨了温度对煤厌氧发酵过程中糖类代谢及效率的影响。结果表明,多糖和还原糖的含量变化趋势在不同温度条件下基本一致,但峰值含量及变化幅度存在显著差异。60℃条件下生物甲烷产量最高,在此温度下,微生物群落结构稳定,水解产酸菌和产甲烷菌的协同作用最佳,糖类代谢途径稳定,代谢效率最佳。本研究揭示了温度对微生物群落结构及糖类代谢途径的调控作用,为煤厌氧发酵技术的开发提供了重要的理论依据。
关键词(KeyWords): 温度;煤;厌氧发酵;糖类代谢
基金项目(Foundation): 河南省自然资源厅科研项目“平顶山矿区深部煤层气微生物增产与减排关键技术研发”(豫自然资函(2023)610号-12);; 河南省财政大气污染防治资金“河南省煤层气资源先导性开发试验”;; 河南省地质研究院科研项目“深部煤系气超临界相态转化模式及高效产出条件”(2025-904-XM03)
作者(Author): 陈俊侠,吴会永,史小卫,祁梦娇,石志衍,王乾
参考文献(References):
- [1]XIE K C. Reviews of clean coal conversion technology in China:Situations&challenges[J]. Chinese Journal of Chemical Engineering,2021, 35:62-69.
- [2]王双明,申艳军,宋世杰,等.“双碳”目标下煤炭能源地位变化与绿色低碳开发[J].煤炭学报,2023, 48(7):2599-2612.
- [3]PARK S Y, LIANG Y N. Biogenic methane production from coal:A review on recent research and development on microbially enhanced coalbed methane(MECBM)[J]. Fuel, 2016, 166:258-267.
- [4]吴锦,邹隆志,陈扬,等.双碳目标下以煤炭为基础的氨合成与清洁利用的未来与挑战[J].洁净煤技术,2023, 29(7):21-50.
- [5]王双明,刘浪,赵玉娇,等.“双碳”目标下赋煤区新能源开发——未来煤矿转型升级新路径[J].煤炭科学技术,2023, 51(1):59-79.
- [6]苏现波,夏大平,赵伟仲,等.煤层气生物工程研究进展[J].煤炭科学技术,2020, 48(6):1-30.
- [7]吕清刚,柴祯.“双碳”目标下的化石能源高效清洁利用[J].中国科学院院刊,2022, 37(4):541-548.
- [8]SU X B, ZHAO W Z, XIA D P, et al. Experimental study of advantages of coalbed gas bioengineering[J]. Journal of Natural Gas Science and Engineering, 2022, 102.
- [9]CUI J, MALONEY M I, OLSON D G, et al. Conversion of phosphoenolpyruvate to pyruvate in Thermoanaerobacterium saccharolyticum[J]. Metabolic engineering communications, 2020,10.
- [10]PAN W L, OUYANG H L, TAN X Q, et al. Effects of biochar addition towards the treatment of blackwater in anaerobic dynamic membrane bioreactor(AnDMBR):Comparison among room temperature, mesophilic and thermophilic conditions[J]. Bioresource Technology, 2023, 374.
- [11]吴裕根,王佟,苗琦,等.中国能源消费形势分析及能源安全体系建设[J].中国煤炭地质,2024, 36(3):38-42.
- [12]AMIN F R, KHALID H, EL-MASHAD H M, et al. Functions of bacteria and archaea participating in the bioconversion of organic waste for methane production[J]. Science of the Total Environment, 2021,763.
- [13]SONG P X, HAN R L, GAO Y, et al. Dual-pathway glycolysis inhibition for boosting bioenergetic therapy synergistic with chemodynamic/photothermal therapy[J]. Chemical Engineering Journal, 2024, 483.
- [14]陈畅,金文雄,戴壮强.生物化学中糖类分解代谢的教学创新[J].生命的化学,2021, 41(9):2060-2067.
- [15]DONG Z W, GUO H Y, ZHANG M L, et al. Enhancing biomethane yield of coal in anaerobic digestion using iron/copper nanoparticles synthesized from corn straw extract[J]. Fuel, 2022, 319.
- [16]NAZIR F, JAHAN B, IQBAL N, et al. Methyl jasmonate influences ethylene formation, defense systems, nutrient homeostasis and carbohydrate metabolism to alleviate arsenic-induced stress in rice(Oryza sativa)[J]. Plant Physiology and Biochemistry, 2023, 202.
- [17]CONNAUGHTON S, COLLINS G, O'FLAHERTY V.Psychrophilic and mesophilic anaerobic digestion of brewery effluent:A comparative study[J]. Water Research, 2006, 40(13):2503-2510.
- [18]李金平,汪雅茹,NOVAKOVIC V,等.尾菜批式中温发酵和高温发酵过程对比试验研究[J].中国沼气,2024, 42(5):23-29.
- [19]吴美容,张瑞,周俊,等.温度对产甲烷菌代谢途径和优势菌群结构的影响[J].化工学报,2014, 65(5):1602-1606.
- [20]LAIKOVA A, ZHURAVLEVA E, SHEKHURDINA S, et al. The intracellular accumulation of iron coincides with enhanced biohydrogen production byThermoanaerobacterium thermosaccharolyticum[J]. Chemical Engineering Journal, 2024, 497.
- [21]BING R G, STRAUB C T, SULIS D B, et al. Plant biomass fermentation by the extreme thermophileCaldicellulosiruptor besciifor co-production of green hydrogen and acetone:Technoeconomic analysis[J]. Bioresource Technology, 2022, 348.
- [22]王佟,李聪聪,赵欣,等.关于我国深部煤炭与煤系气资源勘查的思考[J].中国煤炭地质,2025, 37(1):1-6.
- [23]李群.蒽酮比色法测定羊肚菌多糖及试验评价[J].中国卫生检验杂志,2000(1):31-32.
- [24]魏晓明,符红,万幼平.硫酸蒽酮比色法测定鹿龟酒中多糖的含量[J].中成药,2000(5):62-4.
- [25]高文军,李卫红,王喜明,等.3,5-二硝基水杨酸法测定蔓菁中还原糖和总糖含量[J].中国药业,2020, 29(9):113-116.
- [26]杨玉,胡亮,王芳. 3,5-二硝基水杨酸吸光光度法测定马铃薯淀粉废水中还原糖含量[J].甘肃科技,2013, 29(5):139-140.
- [27]李啸宇,何环,张倩,等.黄铁矿对煤生物产气和微生物群落结构的影响[J].微生物学报,2023, 63(6):2185-2203.
- [28]周艺璇,苏现波,赵伟仲,等.煤微生物甲烷化的石墨烯强化机制[J].煤炭学报,2023, 48(11):4145-4156.
- [29]TREU L, KOUGIAS P G, CAMPANARO S, et al. Deeper insight into the structure of the anaerobic digestion microbial community; the biogas microbiome database is expanded with 157 new genomes[J].Bioresource Technology, 2016,216.
- [30]ZHANG Q F, PENG C, PU J J, et al. Intermittent energization improves anaerobic digestion of microbial electrolysis cell-assisted nitrogen-rich sludge under mesophilic and thermophilic conditions[J].Journal of Environmental Chemical Engineering, 2024, 12(1).
- [31]SHAO M S, ZHANG C, WANG X, et al. Co-digestion of food waste and hydrothermal liquid digestate:Promotion effect of selfgenerated hydrochars[J]. Environmental Science and Ecotechnology,2023, 15.
- [32]LIN M, QIAO W, REN L J, et al. Determination of effects of thermophilic and hyperthermophilic temperatures on anaerobic hydrolysis and acidogenesis of pig manure through a one-year study[J]. Bioresource Technology, 2024, 391.
- [33]GAGLIANO M C, BRAGUGLIA C M, PETRUCCIOLI M, et al.Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp[J]. Fems Microbiology Ecology,2015, 91(5).
- [34]BEN HANIA W, BOUANANE-DARENFED A, CAYOL J L, et al. Reclassification of Anaerobaculum mobile, Anaerobaculum thermoterrenum, Anaerobaculum hydrogeniformans as Acetomicrobium mobile comb. nov., Acetomicrobium thermoterrenum comb. nov and Acetomicrobium hydrogeniformans comb. nov., respectively, and emendation of the genus Acetomicrobium[J]. Int J Syst Evol Microbiol,2016, 66:1506-9.
- [35]TSAVKELOVA E, PROKUDINA L, EGOROVA M, et al. The structure of the anaerobic thermophilic microbial community for the bioconversion of the cellulose-containing substrates into biogas[J].Process Biochemistry, 2018, 66:183-96.
- [36]XIONG Z Y, HUSSAIN A, LEE J, et al. Food waste fermentation in a leach bed reactor:Reactor performance, and microbial ecology and dynamics[J]. Bioresource Technology, 2019, 274:153-61.
- [37]CHEN Y Q, CHEN T, YIN J. Impact of N-butyryl-L-homoserine lactone-mediated quorum sensing on acidogenic fermentation under saline conditions:Insights into volatile fatty acids production and microbial community[J]. Bioresource Technology, 2023, 368.
- [38]ZHU L, ZHAO Y X, CHEN S Y, et al. Alternating ventilation accelerates the mineralization and humification of food waste by optimizing the temperature-oxygen-moisture distribution in the static composting reactor[J]. Bioresource Technology, 2024, 393.
- [39]DE BARROS V G, DUDA R M, VANTINI J D, et al. Improved methane production from sugarcane vinasse with filter cake in thermophilic UASB reactors, with predominance of Methanothermobacter and Methanosarcina archaea and Thermotogae bacteria[J]. Bioresource Technology, 2017, 244:371-81.