矿井工作面应力分布层析反演方法及影响因素分析Tomographic Inversion Method and Influence Factors of Mine Working Faces' In-situ Stress Distributions
王惠风,陈同俊
摘要(Abstract):
在回采前查明矿井工作面应力分布是矿井动力灾害有效防治的前提条件。为了在回采前有效查明矿井工作面的应力分布,综合样品超声实验测试、工作面应力分布仿真模拟和实例工作面折射波层析反演等技术方法,探讨了利用工作面顶板关键层折射纵波层析反演工作面应力分布的技术方法,并在此基础上分析了影响工作面应力分布的主要因素。研究结果表明,在0~40 MPa应力范围,灰岩顶板关键层样品的纵横波速度与应力单调正相关。相对于横波来说,纵波速度对应力变化更敏感,用其预测应力变化效果更好;相对于二维层析反演来说,三维层析反演不仅能表征工作面纵波速度分布的总体趋势,还能表征工作面纵波速度分布的精细变化,效果更优。对于实例工作面A来说,采空区和褶曲构造是影响工作面应力分布的主要因素。马鞍形构造和褶曲核部对应高应力异常,背斜到向斜间的过渡带对应低应力异常,新近采空区一侧工作面的应力明显高于采空较久一侧工作面。由于具有坚硬顶板关键层的矿井工作面广泛存在,该应力分布反演技术和影响因素分析方法具有理论意义和应用价值,值得深入研究和推广应用。
关键词(KeyWords): 工作面;关键层;层析反演;速度分布;应力分布;影响因素
基金项目(Foundation): 国家重点研发计划“多尺度多场条件下煤系战略性金属矿产的地球物理响应与设备研发”(2021YFC2902003)
作者(Author): 王惠风,陈同俊
参考文献(References):
- [1]WANG G, JIANG B, YU Z,et al. The system of extensional structures developed in the late Yanshanian orogeny in the west of Shandong Province, China[J]. Tectonophysics, 1994, 238(1-4):217-228.
- [2]王志国.深部开采上覆岩层中采动裂隙网络演化规律研究[M].北京:煤炭工业出版社,2016.
- [3]KANG H P, JIANG P F, WU Y Z,et al. A combined “ground support-rock modification-destressing” strategy for 1000-m deep roadways in extreme squeezing ground condition[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142:104746.
- [4]DOU L M, CHEN T J, GONG S Y, et al. Rockburst hazard determination by using computed tomography technology in deep workface[J]. Safety Science, 2012, 50(4):736-740.
- [5]钱鸣高,石平五.矿山压力与岩层控制[M].江苏徐州:中国矿业大学出版社,2010.
- [6]CHEN T, WANG X, MUKERJI T. In situ identification of high vertical stress areas in an underground coal mine panel using seismic refraction tomography[J]. International Journal of Coal Geology, 2015,149:55-66.
- [7]CHEN T, MUKERJI T, DOU L. A correlation radius estimate between in-panel faults and high-stress areas using Monte Carlo simulation and point process statistics[J]. International Journal of Coal Geology, 2017, 175:51-62.
- [8]FRITH R, REED G, JONES A. A causation mechanism for coal bursts during roadway development based on the major horizontal stress in coal:Very specific structural geology causing a localised loss of effective coal confinement and Newton’s second law[J]. International Journal of Mining Science and Technology, 2020, 30(1):39-47.
- [9]HANSON D R, VANDERGRIFT T L, DEMARCO M J,et al.Advanced techniques in site characterization and mining hazard detection for the underground coal industry[J]. International Journal of Coal Geology, 2002, 50(1-4):275-301.
- [10]CHEN T J, LIN Z J, LIU Z L,et al. A Comparative Experiment on Heterogeneous Distributions of Stress Field for Underground Panels With Different Geological Setting in North China[J]. Ieee Transactions on Geoscience and Remote Sensing, 2022, 60:4502615.
- [11]LIU Z L, WANG J, CHEN T J, et al. Seismic time-lapse monitoring of gas drainage in an underground coal working face[J].International Journal of Coal Geology, 2021, 237:103712.
- [12]KRAU?F, GIESE R, ALEXANDRAKIS C, et al. Seismic traveltime and attenuation tomography to characterize the excavation damaged zone and the surrounding rock mass of a newly excavated ramp and chamber[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70:524-532.
- [13]MAVKO G, MUKERJI T, DVORKIN J. The rock physics handbook[M]. Cambridge:Cambridge University Press, 2019.
- [14]周衍,饶莹.黄土塬覆盖区的层析反演静校正方法研究[J].地球物理学报,2019, 62(11):4393-4400.
- [15]CHEN D L, GORIS B, BLEICHRODT F, et al. The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in nanocomposite thin-films and sections[J]. Ultramicroscopy, 2014,147:137-148.
- [16]赵世文.阳泉矿区保安煤矿15号煤层冲击倾向性试验研究[J].能源与节能,2020, 2020(11):13-16.
- [17]靳科科.阳泉矿区寺家庄井田煤系气赋存地质因素分析[J].能源与节能,2021, 2021(5):44-45,133.
- [18]KANG H, ZHANG X, SI L, et al. In-situ stress measurements and stress distribution characteristics in underground coal mines in China[J]. Engineering Geology, 2010, 116(3-4):333-345.
- [19]房璐,王硕,徐珂,等.山西沁水盆地现今地应力特征[J].断块油气田,2018, 25(4):413-418.