构造煤孔隙结构及甲烷吸附性能分子模拟研究Study on the Porous Structure and the Methane Adsorption of Tectonic Coal at Molecular Level
杨君文,赵晓慧,郑斌
摘要(Abstract):
构造煤在我国煤炭资源中占比较大,开展构造煤中气体赋存规律研究意义重大。使用分子尺度模拟方法研究煤在机械载荷作用下的微观孔隙结构以及甲烷吸附性能演化规律,结果表明,膨胀变形导致煤体孔隙率和比表面积增大,而压缩变形不利于二者。进一步研究发现,煤体吸附甲烷属于典型的单分子层吸附,膨胀变形会导致煤吸附甲烷性能增强,尤其构造煤内的封闭孔和开放孔尺寸变化对其吸附甲烷性能的影响较大。研究结果对于理解构造煤形成时微观孔隙结构演化以及甲烷气体赋存规律提供一定的理论指导。
关键词(KeyWords): 煤层气;构造煤;微观结构;分子模拟;甲烷吸附
基金项目(Foundation): 陕西省自然科学基金面上项目(2023-JC-YB-371)
作者(Author): 杨君文,赵晓慧,郑斌
参考文献(References):
- [1]李树刚,杨二豪,林海飞,等.深部开采卸压瓦斯精准抽采体系构建及实践[J].煤炭科学技术,2021,49(5):1-10.
- [2]刘毅,张禹.我国煤矿瓦斯防治与抽采利用技术进展[J].煤炭科学技术,2013,41(S2):185-188.
- [3]王耀强,李文.阿艾矿区地质构造及其演化对煤层瓦斯生成及赋存的控制[J].煤炭技术,2021,40(10):76-79.
- [4]CHENG Y P,PAN Z J. Reservoir properties of Chinese tectonic coal:A review[J]. Fuel,2020,260:1-22.
- [5]李阳,张玉贵,张浪,等.基于压汞、低温N2吸附和CO2吸附的构造煤孔隙结构表征[J].煤炭学报,2019,44(4):1188-1196.
- [6]肖鹏,杜媛媛.构造煤微观结构对其吸附特性的影响实验[J].西安科技大学学报,2021,41(2):237-245.
- [7]ALEXEEV A D,VASILENKO T A, ULYANOVA E V. Closed porosity in fossil coals[J]. Fuel,1999,78(6):635-638.
- [8]CAI Y D,LIU D M,PAN Z J,et al. Pore structure of selected Chinese coals with heating and pressurization treatments[J]. Science China Earth Sciences,2014,57(7):1567-1582.
- [9]PAN J N,NIU Q H,WANG K,et al. The closed pores of tectonically deformed coal studied by small-angle X-ray scattering and liquid nitrogen adsorption[J]. Microporous and Mesoporous Materials,2016,224:245-252.
- [10]HOU X W,LIU S M,ZHU Y M,et al. Experimental and theoretical investigation on sorption kinetics and hysteresis of nitrogen,methane,and carbon dioxide in coals[J]. Fuel,2020,268:1-15.
- [11]YAL?IN E,DURUCAN?. Methane capacities of Zonguldak coals and the factors affecting methane adsorption[J]. Mining Science and Technology,1991,13(2):215-222.
- [12] GUO H J, CHENG Y P, REN T, et al. Pulverization characteristics of coal from a strong outburst-prone coal seam and their impact on gas desorption and diffusion properties[J]. Journal of Natural Gas Science and Engineering,2016,33:867-878.
- [13] YU S,BO J,MING L,et al. A review on pore-fractures in tectonically deformed coals[J]. Fuel,2020,278:1-34.
- [14] LI S G,BAI Y,LIN H F,et al. Molecular simulation of adsorption of gas in coal slit model under the action of liquid nitrogen[J]. Fuel,2019,255:1-8.
- [15]YANG Y H,PAN J N,HOU Q L,et al. Stress degradation mechanism of coal macromolecular structure:Insights from molecular dynamics simulation and quantum chemistry calculations[J]. Fuel,2021,303:1-10.
- [16]黄林岗,林凌,罗文嘉.煤层气中甲烷扩散及水锁效应的分子动力学研究[J].煤炭学报,2023,48(11):4124-4134.
- [17]王宇恒,史波波,赵鹏翔,等.复合惰气在采空区遗煤中竞争吸附的分子动力学模拟研究[J].中国安全生产科学技术,2022,18(9):82-88.
- [18]MATHEWS J P,CHAFFEE A L. The molecular representations of coal-A review[J]. Fuel,2012,96:1-14.
- [19]BAI F Y,FAN M Q,YANG H L,et al. Fast recognition using convolutional neural network for the coal particle density range based on images captured under multiple light sources[J]. International Journal of Mining Science and Technology,2021,31(6):1053-1061.
- [20] HOOVER W G. Canonical dynamics equilibrium phase space distributions[J]. Physical Review A,1985,31(3):1695-1697.
- [21] NOSéS. A unified formulation of the constant temperature molecular-dynamics methods[J]. Journal of Chemical Physics,1984,81(1):511-519.
- [22]YANG Q Y,ZHONG C L. Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks[J].The Journal of Physical Chemistry B,2006,110(36):17776-17783.
- [23]MARTIN M G,SIEPMANN J I. Transferable potentials for phase equilibria. 1. united-atom description of n-alkanes[J]. The Journal of Physical Chemistry B,1998,102(14):2569-2577.
- [24]PAN J N,MENG Z P,HOU Q L,et al. Coal strength and Young’s modulus related to coal rank,compressional velocity and maceral composition[J]. Journal of Structural Geology,2013,54:129-135.
- [25]WILLEMS T F,RYCROFT C H,KAZI M,et al. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials[J]. Microporous and Mesoporous Materials,2012,149(1):134-141.